Preparation for Group Assignment#

This tutorial contains various small guides for tasks you will need or come in handy in the upcoming group assignment.

We’re going to need a couple of packages for this tutorial:

from atlite.gis import ExclusionContainer
from atlite.gis import shape_availability
import atlite
from rasterio.plot import show
import geopandas as gpd
import pandas as pd
import xarray as xr
import matplotlib.pyplot as plt
import country_converter as coco
import atlite

Preparatory Downloads#

For this tutorial, we also need to download a few files, for which one can use the urllib library:

Hide code cell content
from urllib.request import urlretrieve
Hide code cell content
fn = "era5-2013-NL.nc"
url = "https://tubcloud.tu-berlin.de/s/bAJj9xmN5ZLZQZJ/download/" + fn
urlretrieve(url, fn)
('era5-2013-NL.nc', <http.client.HTTPMessage at 0x7f5a202de050>)
Hide code cell content
fn = "PROBAV_LC100_global_v3.0.1_2019-nrt_Discrete-Classification-map_EPSG-4326-NL.tif"
url = f"https://tubcloud.tu-berlin.de/s/567ckizz2Y6RLQq/download?path=%2Fcopernicus-glc&files={fn}"
urlretrieve(url, fn)
('PROBAV_LC100_global_v3.0.1_2019-nrt_Discrete-Classification-map_EPSG-4326-NL.tif',
 <http.client.HTTPMessage at 0x7f5a2035a590>)
Hide code cell content
fn = "WDPA_Oct2022_Public_shp-NLD.tif"
url = (
    f"https://tubcloud.tu-berlin.de/s/567ckizz2Y6RLQq/download?path=%2Fwdpa&files={fn}"
)
urlretrieve(url, fn)
('WDPA_Oct2022_Public_shp-NLD.tif',
 <http.client.HTTPMessage at 0x7f5a20360310>)
Hide code cell content
fn = "GEBCO_2014_2D-NL.nc"
url = (
    f"https://tubcloud.tu-berlin.de/s/567ckizz2Y6RLQq/download?path=%2Fgebco&files={fn}"
)
urlretrieve(url, fn)
('GEBCO_2014_2D-NL.nc', <http.client.HTTPMessage at 0x7f5a20362190>)

Downloading historical weather data from ERA5 with atlite#

First, let’s load some small example country. Let’s say, the Netherlands.

fn = "https://tubcloud.tu-berlin.de/s/567ckizz2Y6RLQq/download?path=%2Fgadm&files=gadm_410-levels-ADM_1-NLD.gpkg"
regions = gpd.read_file(fn)
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/pyogrio/raw.py:198: RuntimeWarning: File /vsimem/pyogrio_fc70a2516b214ae9b393a12b795dfe34 has GPKG application_id, but non conformant file extension
  return ogr_read(
regions.plot()
<Axes: >
_images/0446f6160722522413667abe66b2dd5b968de08fd9e04612e17124e25c6ecf98.png

In this example we download historical weather data ERA5 data on-demand for a cutout we want to create.

Note

For this example to work, you should have

  • installed the Copernicus Climate Data Store cdsapi package (conda list cdsapi or pip install cdsapi) and

  • registered and setup your CDS API key as described on this website. Note that there are different instructions depending on your operating system.

A cutout is the basis for any of your work and calculations in atlite.

The cutout is created in the directory and file specified by the relative path. If a cutout at the given location already exists, then this command will simply load the cutout again. If the cutout does not yet exist, it will specify the new cutout to be created.

For creating the cutout, you need to specify the dataset (e.g. ERA5), a time period and the spatial extent (in latitude and longitude).

minx, miny, maxx, maxy = regions.total_bounds
buffer = 0.25
cutout = atlite.Cutout(
    path="era5-2013-NL.nc",
    module="era5",
    x=slice(minx - buffer, maxx + buffer),
    y=slice(miny - buffer, maxy + buffer),
    time="2013",
)
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/atlite/cutout.py:156: UserWarning: Arguments module, x, y, time are ignored, since cutout is already built.
  warn(

Calling the function cutout.prepare() initiates the download and processing of the weather data. Because the download needs to be provided by the CDS servers, this might take a while depending on the amount of data requested.

Note

You can check the status of your request here.

# cutout.prepare(compression=None)

The data is accessible in cutout.data. Included weather variables are listed in cutout.prepared_features. Querying the cutout gives us some basic information on which data is contained in it.

cutout.data
<xarray.Dataset> Size: 134MB
Dimensions:           (x: 17, y: 14, time: 8760)
Coordinates:
  * x                 (x) float64 136B 3.25 3.5 3.75 4.0 ... 6.5 6.75 7.0 7.25
  * y                 (y) float64 112B 50.5 50.75 51.0 ... 53.25 53.5 53.75
  * time              (time) datetime64[ns] 70kB 2013-01-01 ... 2013-12-31T23...
    lon               (x) float64 136B dask.array<chunksize=(17,), meta=np.ndarray>
    lat               (y) float64 112B dask.array<chunksize=(14,), meta=np.ndarray>
Data variables: (12/13)
    height            (y, x) float32 952B dask.array<chunksize=(14, 17), meta=np.ndarray>
    wnd100m           (time, y, x) float32 8MB dask.array<chunksize=(100, 14, 17), meta=np.ndarray>
    wnd_azimuth       (time, y, x) float32 8MB dask.array<chunksize=(100, 14, 17), meta=np.ndarray>
    roughness         (time, y, x) float32 8MB dask.array<chunksize=(100, 14, 17), meta=np.ndarray>
    influx_toa        (time, y, x) float32 8MB dask.array<chunksize=(100, 14, 17), meta=np.ndarray>
    influx_direct     (time, y, x) float32 8MB dask.array<chunksize=(100, 14, 17), meta=np.ndarray>
    ...                ...
    albedo            (time, y, x) float32 8MB dask.array<chunksize=(100, 14, 17), meta=np.ndarray>
    solar_altitude    (time, y, x) float64 17MB dask.array<chunksize=(100, 14, 17), meta=np.ndarray>
    solar_azimuth     (time, y, x) float64 17MB dask.array<chunksize=(100, 14, 17), meta=np.ndarray>
    temperature       (time, y, x) float64 17MB dask.array<chunksize=(100, 14, 17), meta=np.ndarray>
    soil temperature  (time, y, x) float64 17MB dask.array<chunksize=(100, 14, 17), meta=np.ndarray>
    runoff            (time, y, x) float32 8MB dask.array<chunksize=(100, 14, 17), meta=np.ndarray>
Attributes:
    module:             era5
    prepared_features:  ['influx', 'wind', 'height', 'temperature', 'runoff']
    chunksize_time:     100
    Conventions:        CF-1.6
    history:            2023-01-15 21:33:09 GMT by grib_to_netcdf-2.25.1: /op...
cutout.prepared_features
module  feature    
era5    height                   height
        wind                    wnd100m
        wind                wnd_azimuth
        wind                  roughness
        influx               influx_toa
        influx            influx_direct
        influx           influx_diffuse
        influx                   albedo
        influx           solar_altitude
        influx            solar_azimuth
        temperature         temperature
        temperature    soil temperature
        runoff                   runoff
dtype: object
cutout
<Cutout "era5-2013-NL">
 x = 3.25 ⟷ 7.25, dx = 0.25
 y = 50.50 ⟷ 53.75, dy = 0.25
 time = 2013-01-01 ⟷ 2013-12-31, dt = h
 module = era5
 prepared_features = ['height', 'wind', 'influx', 'temperature', 'runoff']

Repetition: From Land Eligibility Analysis to Availability Matrix#

We’re going to use the plotting functions from previous exercises:

def plot_area(masked, transform, shape):
    fig, ax = plt.subplots(figsize=(5, 5))
    ax = show(masked, transform=transform, cmap="Greens", vmin=0, ax=ax)
    shape.plot(ax=ax, edgecolor="k", color="None", linewidth=1)

First, we collect all exclusion and inclusion criteria in an ExclusionContainer.

excluder = ExclusionContainer(crs=3035, res=300)
fn = "PROBAV_LC100_global_v3.0.1_2019-nrt_Discrete-Classification-map_EPSG-4326-NL.tif"
excluder.add_raster(fn, codes=[50], buffer=1000, crs=4326)
excluder.add_raster(fn, codes=[20, 30, 40, 60], crs=4326, invert=True)
fn = "WDPA_Oct2022_Public_shp-NLD.tif"
excluder.add_raster(fn, crs=3035)
fn = "GEBCO_2014_2D-NL.nc"
excluder.add_raster(fn, codes=lambda x: x > 10, crs=4326, invert=True)

Then, we can calculate the available areas…

masked, transform = shape_availability(regions.to_crs(3035).geometry, excluder)

… and plot it:

plot_area(masked, transform, regions.to_crs(3035).geometry)
_images/285d2fcd82d6a0b46df38f390945b20b1a553a8cecc73226a1bfd6528f536803.png

Availability Matrix#

regions.index = regions.GID_1
cutout = atlite.Cutout("era5-2013-NL.nc")
?cutout.availabilitymatrix
A = cutout.availabilitymatrix(regions, excluder)
cap_per_sqkm = 1.7  # MW/km2

area = cutout.grid.set_index(["y", "x"]).to_crs(3035).area / 1e6

area = xr.DataArray(area, dims=("spatial"))

capacity_matrix = A.stack(spatial=["y", "x"]) * area * cap_per_sqkm

Solar PV Profiles#

pv = cutout.pv(
    panel=atlite.solarpanels.CdTe,
    matrix=capacity_matrix,
    orientation="latitude_optimal",
    index=regions.index,
    per_unit=True,
)
pv.to_pandas().head()
GID_1 NLD.1_1 NLD.2_1 NLD.3_1 NLD.4_1 NLD.5_1 NLD.6_1 NLD.7_1 NLD.8_1 NLD.9_1 NLD.10_1 NLD.11_1 NLD.12_1 NLD.13_1 NLD.14_1
time
2013-01-01 00:00:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2013-01-01 01:00:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2013-01-01 02:00:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2013-01-01 03:00:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2013-01-01 04:00:00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
pv.to_pandas().iloc[:, 0].plot()
<Axes: xlabel='time'>
_images/67950fdaed93509c2f08b452030bb3fb30f5b89df96c60dc90b0e94d521810d4.png

Wind Profiles#

wind = cutout.wind(
    atlite.windturbines.Vestas_V112_3MW,
    matrix=capacity_matrix,
    index=regions.index,
    per_unit=True,
)
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/atlite/resource.py:90: FutureWarning: 'add_cutout_windspeed' for wind turbine
power curves will default to True in atlite relase v0.2.15.
  warnings.warn(msg, FutureWarning)
wind.to_pandas().head()
GID_1 NLD.1_1 NLD.2_1 NLD.3_1 NLD.4_1 NLD.5_1 NLD.6_1 NLD.7_1 NLD.8_1 NLD.9_1 NLD.10_1 NLD.11_1 NLD.12_1 NLD.13_1 NLD.14_1
time
2013-01-01 00:00:00 0.999056 0.998485 0.998294 0.997185 0.998198 0.998937 0.997705 0.998457 0.996653 0.998057 0.996010 0.998684 0.997938 0.995548
2013-01-01 01:00:00 0.991667 0.993051 0.970360 0.995386 0.953421 0.994112 0.997151 0.997635 0.984541 0.997531 0.985574 0.996537 0.992089 0.983092
2013-01-01 02:00:00 0.981956 0.970941 0.933896 0.982949 0.903412 0.974296 0.995252 0.993278 0.939996 0.989856 0.956938 0.968682 0.976204 0.952877
2013-01-01 03:00:00 0.948241 0.870216 0.846933 0.946690 0.840527 0.877124 0.980648 0.951256 0.773720 0.957361 0.852354 0.853057 0.899308 0.837002
2013-01-01 04:00:00 0.770508 0.647249 0.572062 0.846147 0.593890 0.611827 0.921734 0.850735 0.490069 0.841523 0.681832 0.705750 0.730653 0.623015
wind.to_pandas().iloc[:, 0].plot()
<Axes: xlabel='time'>
_images/e6043e569f02f35ae574c780158949d7832b91fc1f8b08297945850bb4a771ec.png

Merging Shapes in geopandas#

Spatial data is often more granular than we need. For example, we might have data on sub-national units, but we’re actually interested in studying patterns at the level of countries.

Whereas in pandas we would use the groupby() function to aggregate entries, in geopandas, we aggregate geometric features using the dissolve() function.

Suppose we are interested in studying continents, but we only have country-level data like the country dataset included in geopandas. We can easily convert this to a continent-level dataset.

world = gpd.read_file("https://naciscdn.org/naturalearth/110m/cultural/ne_110m_admin_0_countries.zip")
world.head(3)
featurecla scalerank LABELRANK SOVEREIGNT SOV_A3 ADM0_DIF LEVEL TYPE TLC ADMIN ... FCLASS_TR FCLASS_ID FCLASS_PL FCLASS_GR FCLASS_IT FCLASS_NL FCLASS_SE FCLASS_BD FCLASS_UA geometry
0 Admin-0 country 1 6 Fiji FJI 0 2 Sovereign country 1 Fiji ... None None None None None None None None None MULTIPOLYGON (((180 -16.06713, 180 -16.55522, ...
1 Admin-0 country 1 3 United Republic of Tanzania TZA 0 2 Sovereign country 1 United Republic of Tanzania ... None None None None None None None None None POLYGON ((33.90371 -0.95, 34.07262 -1.05982, 3...
2 Admin-0 country 1 7 Western Sahara SAH 0 2 Indeterminate 1 Western Sahara ... Unrecognized Unrecognized Unrecognized None None Unrecognized None None None POLYGON ((-8.66559 27.65643, -8.66512 27.58948...

3 rows × 169 columns

world
featurecla scalerank LABELRANK SOVEREIGNT SOV_A3 ADM0_DIF LEVEL TYPE TLC ADMIN ... FCLASS_TR FCLASS_ID FCLASS_PL FCLASS_GR FCLASS_IT FCLASS_NL FCLASS_SE FCLASS_BD FCLASS_UA geometry
0 Admin-0 country 1 6 Fiji FJI 0 2 Sovereign country 1 Fiji ... None None None None None None None None None MULTIPOLYGON (((180 -16.06713, 180 -16.55522, ...
1 Admin-0 country 1 3 United Republic of Tanzania TZA 0 2 Sovereign country 1 United Republic of Tanzania ... None None None None None None None None None POLYGON ((33.90371 -0.95, 34.07262 -1.05982, 3...
2 Admin-0 country 1 7 Western Sahara SAH 0 2 Indeterminate 1 Western Sahara ... Unrecognized Unrecognized Unrecognized None None Unrecognized None None None POLYGON ((-8.66559 27.65643, -8.66512 27.58948...
3 Admin-0 country 1 2 Canada CAN 0 2 Sovereign country 1 Canada ... None None None None None None None None None MULTIPOLYGON (((-122.84 49, -122.97421 49.0025...
4 Admin-0 country 1 2 United States of America US1 1 2 Country 1 United States of America ... None None None None None None None None None MULTIPOLYGON (((-122.84 49, -120 49, -117.0312...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
172 Admin-0 country 1 5 Republic of Serbia SRB 0 2 Sovereign country 1 Republic of Serbia ... None None None None None None None None None POLYGON ((18.82982 45.90887, 18.82984 45.90888...
173 Admin-0 country 1 6 Montenegro MNE 0 2 Sovereign country 1 Montenegro ... None None None None None None None None None POLYGON ((20.0707 42.58863, 19.80161 42.50009,...
174 Admin-0 country 1 6 Kosovo KOS 0 2 Disputed 1 Kosovo ... Admin-0 country Unrecognized Admin-0 country Unrecognized Admin-0 country Admin-0 country Admin-0 country Admin-0 country Unrecognized POLYGON ((20.59025 41.85541, 20.52295 42.21787...
175 Admin-0 country 1 5 Trinidad and Tobago TTO 0 2 Sovereign country 1 Trinidad and Tobago ... None None None None None None None None None POLYGON ((-61.68 10.76, -61.105 10.89, -60.895...
176 Admin-0 country 1 3 South Sudan SDS 0 2 Sovereign country 1 South Sudan ... None None None None None None None None None POLYGON ((30.83385 3.50917, 29.9535 4.1737, 29...

177 rows × 169 columns

continents = world.dissolve(by="CONTINENT").geometry

continents.plot();
_images/c032287432faa8f84d8385895cf4b8509b335068e85ec1aeeeab2538ac926adc.png

If we are interested in the population per continent, we can pass different aggregation strategies to the dissolve() functionusing the aggfunc argument:

https://geopandas.org/en/stable/docs/user_guide/aggregation_with_dissolve.html#dissolve-arguments

continents = world.dissolve(by="CONTINENT", aggfunc=dict(POP_EST="sum"))
continents.plot(column="POP_EST");
_images/9fa38e666eaa65ef7888499984d840b558f1a2426cf17ac08baeac20e3de44a8.png

You can also pass a pandas.Series to the dissolve() function that describes your mapping for more exotic aggregation strategies (e.g. by first letter of the country name):

world.dissolve(by=world.NAME.str[0], aggfunc=dict(POP_EST="sum")).plot(column="POP_EST")
<Axes: >
_images/6c16930acd219f09d11ec2f51dccb00d2aaf316ad317ecb50279833741e305e9.png

Representative Points and Crow-Fly Distances#

The following example includes code to retrieve representative points from polygons and to calculate the distance on a sphere between two points.

world = gpd.read_file("https://naciscdn.org/naturalearth/110m/cultural/ne_110m_admin_0_countries.zip")
points = world.representative_point()
fig, ax = plt.subplots()
world.plot(ax=ax)
points.plot(ax=ax, color="red", markersize=3);
_images/3c1a31a698d5964eac0b534f0ff8b1e6acfe4c66d64d3393fcf9c05c8502aef4.png
points = points.to_crs(4087)
points.index = world.ISO_A3
distances = pd.concat({k: points.distance(p) for k, p in points.items()}, axis=1).div(
    1e3
)  # km
distances.loc["DEU", "NLD"]
564.4945392494385

Global Equal-Area and Equal-Distance CRS#

Previously, we used EPSG:3035 as projection to calculate the area of regions in km². However, this projection is not correct for regions outside of Europe, so that we need to pick different, more suitable projections for calculating areas and distances between regions.

The unit of measurement for both projections is metres.

AREA_CRS = "ESRI:54009"
DISTANCE_CRS = "EPSG:4087"
world = gpd.read_file("https://naciscdn.org/naturalearth/110m/cultural/ne_110m_admin_0_countries.zip")
world.to_crs(AREA_CRS).plot()
<Axes: >
_images/a4ed8e5653d6e2ffb2079d529c23dacf625a26ca21361942594460f282aa6c81.png
world.to_crs(DISTANCE_CRS).plot()
<Axes: >
_images/4386bd3f7714cbb03a078d6fe1111a19e82851c28a036c610e018ebcfdb1f140.png

Country Converter#

The country converter (coco) is a Python package to convert and match country names between different classifications and between different naming versions.

import country_converter as coco

Convert various country names to some standard names, specifying source and target classification scheme:

coco.convert(names="NLD", to="name_official")
'Kingdom of the Netherlands'
coco.convert(names="NLD", to="iso2")
'NL'
coco.convert(names="NLD", src="iso3", to="iso2")
'NL'
country_list = ["AE", "AL", "AM", "AO", "AR"]
coco.convert(names=country_list, src="iso2", to="short_name")
['United Arab Emirates', 'Albania', 'Armenia', 'Angola', 'Argentina']

List of included country classification schemes:

cc = coco.CountryConverter()
cc.valid_country_classifications
['DACcode',
 'Eora',
 'FAOcode',
 'GBDcode',
 'GEOnumeric',
 'GWcode',
 'IOC',
 'ISO2',
 'ISO3',
 'ISOnumeric',
 'UNcode',
 'ccTLD',
 'name_official',
 'name_short',
 'regex']

Gurobi#

Gurobi is one of the most powerful solvers to solve optimisation problems. It is a commercial solver, with free academic licenses.

Note

Using this solver for the group assignment is optional. You can also use other open-source alternatives, but they might just take a little longer to solve.

To set up Gurobi, you need to: